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Abstract. We study the upper limits on the mass of the lightest and second lightest CP even Higgs bosons
in the (M + 1)SSM, the MSSM extended by a gauge singlet. The dominant two loop contributions to the
effective potential are included, which reduce the Higgs masses by ∼ 10GeV. Since the coupling R of the
lightest Higgs scalar to gauge bosons can be small, we study in detail the relations between the masses
and couplings of both lightest scalars. We present upper bounds on the mass of a “strongly” coupled Higgs
(R > 1/2) as a function of lower experimental limits on the mass of a “weakly” coupled Higgs (R < 1/2).
With the help of these results, the whole parameter space of the model can be covered by Higgs boson
searches.

1 Introduction

Curiously enough, the most model independent prediction
of supersymmetric extensions of the standard model con-
cerns a “standard” particle: the mass mh of the (lightest
CP even) Higgs boson. Within the minimal supersymmet-
ric extension of the standard model (MSSM) its mass is
bounded, at tree level, by

m2
h ≤ M2

Z cos2 2β, (1.1)

where tanβ = h1/h2 (H1 couples to up-type quarks in our
convention). It has been realized already some time ago
that loop corrections weaken this upper bound [1]. These
loop corrections depend on the top quark Yukawa cou-
pling ht and the soft SUSY breaking parameters as the
stop masses of O(MSUSY). At the one loop level, given
the present experimental errors on the top mass mt and
assuming MSUSY � 1TeV, the upper limit on mh is �
140GeV. Also two loop corrections to mh have been con-
sidered in the MSSM [2–4]; these have the tendency to
lower the upper bound on mh by ∼ 10GeV.

The subject of the present paper is the next-to-minimal
supersymmetric extension of the standard model ((M +
1)SSM) [5–13] where a gauge singlet superfield S is added
to the Higgs sector. It allows one to omit the so-called
µ term µH1H2 in the superpotential of the MSSM, and
to replace it by a Yukawa coupling (plus a singlet self-
coupling):

W = λSH1H2 +
κ

3
S3 + . . . (1.2)
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The superpotential (1.2) is thus scale invariant, and the
electroweak scale appears only through the SUSY break-
ing terms.

In view of ongoing Higgs searches at LEP2 [14–16] and,
in the near future, at Tevatron Run II [17], it is important
to check the model dependence of bounds on the Higgs
mass. In the (M + 1)SSM, the upper bound on the mass
m1 of the lightest CP even Higgs1 differs from the one of
the MSSM already at tree level: now we have [5,6]

m2
1 ≤ M2

Z

(
cos2 2β +

2λ2

g2
1 + g2

2
sin2 2β

)
, (1.3)

where g1 and g2 denote the U(1)Y and the SU(2)L gauge
couplings. Note that, for λ < .53, m1 is still bounded by
MZ at tree level. Large values of λ, λ > .7, are in any
case prohibited, if one requires the absence of a Landau
singularity for λ below the GUT scale [5,6].

Loop corrections to m1 have also been considered in
the (M+1)SSM [6]. Given mt and assuming again MSUSY
< 1TeV, the upper limit on m1 at one loop is then
∼ 150GeV. Within the constrained (M + 1)SSM (the
C(M+1)SSM), where universal soft SUSY breaking terms
at the GUT scale are assumed [7–10], λ is always below
∼ .3, and the upper limit on m1 reduces to the one of the
MSSM (at one loop) of ∼ 140GeV. Two loop corrections
in the (M + 1)SSM have recently been considered in [13].

Within the (M+1)SSM this is, however, not the end of
the story: It is well known [7,10,11] that now the lightest
Higgs scalar S1 can be dominantly a gauge singlet state. In

1 As there are three CP even Higgs states in the (M+1)SSM,
we denote them as Si with masses mi, i = 1, . . . , 3, in increas-
ing order
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this case it decouples from the gauge bosons and becomes
invisible in Higgs production processes, and the lightest
visible Higgs boson is then actually the second lightest
one S2. Fortunately, under these circumstances S2 can-
not be too heavy [7,10,11]: In the extreme case of a pure
singlet lightest Higgs, the mass m2 of the next-to-lightest
Higgs scalar is again below the upper limit designed orig-
inally for m1. In general, however, mixed scenarios can
be realized, with a weakly coupled (but not pure singlet)
lightest Higgs, and a second lightest Higgs above the pre-
vious m1 limits. Although analyses of the Higgs sector
including these scenarios in the (M + 1)SSM have been
presented before [11] we find that these should be im-
proved: First, experimental errors on the top quark pole
mass mpole

t = 173.8±5.2GeV [18] have been reduced con-
siderably, leading to stronger constraints on the top quark
Yukawa coupling ht which determines to a large extent the
radiative corrections to m1,2. Second, at least the domi-
nant two loop corrections to the effective potential should
be taken into account, since they are not necessarily negli-
gible. The purpose of the present paper is thus an analysis
of the allowed masses and couplings to the gauge bosons
of the lightest CP even Higgs scalars in the (M +1)SSM,
including present constraints on mt and a two loop im-
provement of the Higgs potential.

In the next section we present our method of obtain-
ing the dominant two loop terms in the effective poten-
tial, and in Sect. 3 we give the resulting upper bound on
the lightest Higgs mass. Albeit that this upper limit can
be obtained analytically, the mass of the second lightest
Higgs in relation to the coupling to the gauge bosons re-
quires a numerical analysis. Our methods of scanning the
parameter space of the model in two different scenarios
(constrained and general (M + 1)SSM) are presented in
Sect. 4. Results on the Higgs masses and couplings and
conclusions are presented in Sect. 5.

2 Two loop corrections

In order to obtain the correct upper limit on the Higgs
boson mass in the presence of soft SUSY breaking terms,
radiative corrections to several terms in the effective ac-
tion have to be considered. Let us first introduce a scale
Q ∼ MSUSY, where MSUSY is of the order of the SUSY
breaking terms. Let us assume that quantum corrections
involving momenta p2 � Q2 have been evaluated; the re-
sulting effective action Γeff(Q) is then still of the standard
supersymmetric form plus soft SUSY breaking terms. As-
suming correctly normalized kinetic terms (after appro-
priate rescaling of the fields), the Q dependence of the
parameters in Γeff(Q) is given by the supersymmetric β
functions (valid up to a possible GUT scale MGUT).

Often one is interested in relating the parameters in
Γeff(Q) to more fundamental parameters at MGUT. To this
end one integrates the supersymmetric renormalization
group equations between MGUT and Q ∼ MSUSY to one
or, if one whishes, to two loop accuracy. Note, however,
that the limits on the Higgs boson mass depend exclusively
on the parameters in Γeff(Q) at the scale Q ∼ MSUSY; the

two loop contributions to the effective potential considered
below serve to specify this dependence more precisely. The
accuracy to which one has (possibly) related the param-
eters at the scale Q ∼ MSUSY to parameters at a scale
MGUT is completely irrelevant for the relation between
the Higgs boson mass and the parameters at the scale
Q ∼ MSUSY.

One is left with the computation of quantum correc-
tions to Γeff involving momenta p2 � Q2. Subsequently
the quantum corrections to the following terms in Γeff will
play a role.
(a) Corrections to the kinetic terms of the Higgs bosons.

Due to gauge invariance the same quantum correc-
tions contribute to the kinetic energy and to the
Higgs–Z boson couplings, which affect the relation be-
tween the Higgs VEVs and MZ .

(b) Corrections to the Higgs–top quark Yukawa coupling.
(c) Corrections to the Higgs effective potential. These cor-

rections could, in principle, be decomposed into con-
tributions to the Yukawa couplings λ and κ of (1.2)
and the soft terms (these contributions are the ones
proportional to lnQ2 or, at two loop order, ln2 Q2),
and “non-supersymmetric” contributions which are
Q2 independent. These latter contributions to the ef-
fective potential are of the orders (VEV)n with n > 4
and become small in the case of large soft terms com-
pared to the VEVs. Our results in Sect. 5 are based
on the effective potential including these contributions
(which are not necessarily numerically irrelevant), and
there is no need to perform the decomposition of the
radiative corrections to the effective potential explic-
itly.
Let us start with the last item: The Higgs effective

potential Veff can be developed in power of � or loops as

Veff = V (0) + V (1) + V (2) + . . . (2.1)

Within (M +1)SSM, we are interested in the dependence
of Veff in three CP even scalar VEVs h1, h2 and s (assum-
ing no CP violation in the Higgs sector). The tree level
potential V (0) is determined by the superpotential (1.2)
and the standard soft SUSY breaking terms [5–11]. For
completeness, and in order to fix our conventions, we give
here the expression for V (0):

V (0) = m2
H1

h2
1 +m2

H2
h2

2 +m2
Ss2 − 2λAλh1h2s+

2
3
κAκs3

+ λ2h2
1h

2
2 + λ2(h2

1 + h2
2)s

2 − 2κλh1h2s
2 + κ2s4

+
g2
1 + g2

2

8
(h2

1 − h2
2)

2. (2.2)

The one loop corrections to the effective potential are
given by

V (1) =
1

64π2 STrM
4
[
ln
(

M2

Q2

)
− 3

2

]
, (2.3)

where we only take top and stop loops into account. The
relevant field dependent masses are the top quark mass

mt = hth1, (2.4)
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and the stop mass matrix (in the (T c
R, TL) basis)(

m2
T +m2

t mtÃt

mtÃt m2
Q +m2

t

)
, (2.5)

where mT , mQ are the stop soft masses and

Ãt = At − λs cotβ (2.6)

is the so-called stop mixing. In (2.5) we have neglected the
electroweak D terms which would only give small contri-
butions to the effective potential in the relevant region
mT ,mQ � MZ . The masses of the physical eigenstates
t̃1, t̃2 then read

m2
t̃1,t̃2

= M2
SUSY +m2

t ±
√

δ2M4
SUSY +m2

t Ã
2
t . (2.7)

with

M2
SUSY ≡ 1

2
(m2

Q +m2
T )

and

δ ≡
∣∣∣∣∣m2

Q − m2
T

m2
Q +m2

T

∣∣∣∣∣ . (2.8)

Note that the top Yukawa coupling ht in (2.4) and below is
defined at the scale Q; cf. the discussion at the beginning
of this section.

In the case of large SUSY breaking terms compared
to the VEVs hi, V (1) can be expanded in (even) powers
of hi. The terms quadratic in hi will not affect the upper
bound on the Higgs mass (and can be absorbed into the
unknown soft parameters mH1 , mH2 and Aλ in (2.2)).
In the approximation where the stop mass splitting δ is
small2, the quartic terms read

V (1)
∣∣∣
h4

i

=
3h4

t

16π2 h4
1

(
1
2
X̃t + t

)
, (2.9)

where

t ≡ ln
(

M2
SUSY +m2

t

m2
t

)
, (2.10)

and

X̃t ≡ 2
Ã2

t

M2
SUSY +m2

t

(
1 − Ã2

t

12(M2
SUSY +m2

t )

)
. (2.11)

In our computations, however, we used the full expression
(2.3) for V (1); we will use the quartic terms (2.9) in the
next section only in order to compare our two loop result
to those of [4,13].

2 This approximation is well motivated in the C(M +1)SSM
where we take universal soft terms at the GUT scale. On the
other hand, we have checked numerically that, in general (M+
1)SSM, the lightest Higgs mass takes its maximal value for
δ ∼ 0

Next, we consider the dominant two loop corrections.
These will be numerically important only for large SUSY
breaking terms compared to hi; hence we will expand
again in powers of hi. Since the terms quadratic in hi

can again be absorbed into the tree level soft terms, we
just consider the quartic terms, and here only those which
are proportional to large couplings: terms ∼ αsh

4
t and

∼ h6
t . Finally, we are only interested in leading logs (terms

quadratic in t). The corresponding expression for V (2)

can be obtained from the explicit two loop calculation
of Veff in [3] or, as we have checked explicitly, from the
requirement that the complete effective potential has to
satisfy the renormalization group equations also at scales
Q < MSUSY, provided the non-supersymmetric β function
for ht is used. One obtains in both cases

V
(2)
LL = 3

(
h2

t

16π2

)2

h4
1

(
32παs − 3

2
h2

t

)
t2. (2.12)

Now, we turn to the quantum corrections to the Higgs
boson kinetic terms. They lead to a wave function renor-
malization factor ZH1 in front of the DµH1D

µH1 term
with, to order h2

t ,

ZH1 = 1 + 3
h2

t

16π2 t. (2.13)

Finally, the quantum corrections to the H1–top quark
Yukawa coupling ht have to be considered. After an ap-
propriate rescaling of the H1 and top quark fields in order
to render their kinetic terms properly normalized, these
quantum corrections lead to an effective coupling ht(mt)
with, to orders h2

t , αs,

ht(mt) = ht(Q)
(
1 +

1
32π2

(
32παs − 9

2
h2

t

)
t

)
. (2.14)

In (2.13) and (2.14) the large logarithm t is actually given
by ln

(
Q2/m2

t

)
where Q2 acts as a UV cutoff; cf. the dis-

cussion at the beginning of this section. In the relevant
region MSUSY � mt the expression (2.10) for t can be
used here as well. The (running) top quark mass is then
given by

mt(mt) = ht(mt)Z
1/2
H1

h1, (2.15)

and the relation between the pole and running mass, to
order αs, reads

mpole
t = mt(mt)

(
1 +

4αs

3π

)
. (2.16)

3 Upper bound on the lightest Higgs mass

In this section we derive an analytic upper bound on the
mass of the lightest Higgs scalar. First, we summarize
our contributions to the effective potential. As is already
known, in (M + 1)SSM the upper bound on the light-
est Higgs mass m1 is saturated when its singlet compo-
nent vanishes [7,10,11,13]. One is then only interested in
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the hi-dependent part of the effective potential. Assum-
ing hi � MSUSY, i.e. up to O(h4

i ), one obtains from (2.2),
(2.9) and (2.12)

Veff(h1, h2),

= m̃2
1h

2
1 + m̃2

2h
2
2 − m̃2

3h1h2 +
g2
1 + g2

2

8
(h2

1 − h2
2)

2

+ λ2h2
1h

2
2 +

3h2
t

16π2 h4
1

(
1
2
X̃t + t

)
+ 3

(
h2

t

16π2

)2

h4
1

(
32παs − 3

2
h2

t

)
t2, (3.1)

with

m̃2
1 = m2

H1
+ λ2s2 + rad. corrs.,

m̃2
2 = m2

H2
+ λ2s2 + rad. corrs., (3.2)

m̃2
3 = 2λs(Aλ + κs) + rad. corrs.

The radiative corrections in (3.3) stem from the contribu-
tions to V (1) and V (2) quadratic in hi. In the large tanβ
regime (which saturates the upper bound on the lightest
Higgs in MSSM), one is left with only one non-singlet light
Higgs h1, and (3.1) simplifies to

Veff(h1) = m̃2
1h

2
1 + λ̃h4

1, (3.3)

with

λ̃ =
g2
1 + g2

2

8
+

3h2
t

16π2

(
1
2
X̃t + t

)
+ 3

(
h2

t

16π2

)2(
32παs − 3

2
h2

t

)
t2. (3.4)

(Note that in the large tanβ regime Ãt = At and no de-
pendence on the (M + 1)SSM coupling λ is left in λ̃.)
Now, we can change the variable h1 and replace it by a
variable h′

1 in terms of which the kinetic term is properly
normalized, so that we have

M2
Z =

g2
1 + g2

2

2
h′2

1 . (3.5)

From (2.13) one finds

h2
1 � h′2

1

(
1 − 3h2

t

16π2 t

)
. (3.6)

In terms of h′
1 the effective potential reads

Veff(h′
1) = m̃′2

1 h′2
1 + λ̃′h′4

1 , (3.7)

with

m̃′2
1 = m̃2

1

(
1 − 3h2

t

16π2 t

)
, λ̃′ = λ̃

(
1 − 3h2

t

16π2 t

)2

. (3.8)

Second, recall that ht in the one loop contribution to (3.1)
is given by the Yukawa coupling at the scale Q. Hence,

we can replace ht(≡ ht(Q)) in λ̃′ by ht(mt) using (2.14),
which allows to relate it directly to the running top quark
mass. Equation (2.15) now reads mt(mt) = ht(mt)h′

1.
From (3.7), one obtains the mass mh of the lightest

non-singlet Higgs in the case where the singlet decouples
(and in the large tanβ regime)

m2
h =

1
2
d2Veff

dh′2
1

∣∣∣∣
min

= 4λ̃′h′2
1

∣∣∣
min

. (3.9)

This is just the correct running Higgs mass, but does not
include the pole mass corrections, which involve no large
logarithms and which we will neglect throughout this pa-
per. Using (3.5) and expanding λ̃′ to the appropriate pow-
ers of t, the expression for m2

h becomes3

m2
h = M2

Z

(
1 − 3h2

t

8π2 t

)
(3.10)

+
3h2

t (mt)
4π2 m2

t (mt)

×
(
1
2
X̃t + t +

1
16π2

(
3
2
h2

t − 32παs

)
(X̃t + t)t

)
.

which agrees with the MSSM result in [4]. (Note, however,
that the coefficient of the term ∼ X̃tt on the right hand
side of (3.11) is not necessarily correct, since we would ob-
tain terms of the same order if we would take into account
simple logarithms in the two loop correction V (2) to the
potential.)

The same procedure can be applied for general values
of tanβ. Then, one has to consider the 2× 2 mass matrix
(1/2)(∂hi∂hjVeff), i, j = 1, 2, where the hi are properly
normalized. Its smallest eigenvalue gives the following up-
per bound on the mass m1 of the lightest Higgs boson for
arbitrary mixings among the three states (h1, h2, s) [13]
(which can be saturated if the lightest Higgs boson has a
vanishing singlet component)

m2
1 ≤ M2

Z

(
cos2 2β +

2λ2

g2
1 + g2

2
sin2 2β

)(
1 − 3h2

t

8π2 t

)
+

3h2
t (mt)
4π2 m2

t (mt) sin2 β (3.11)

×
(
1
2
X̃t + t +

1
16π2

(
3
2
h2

t − 32παs

)
(X̃t + t)t

)
.

The only difference between the MSSM bound [4] and
(3.11) is the “tree level” term ∼ λ2 sin2 2β. This term is
important for moderate values of tanβ. Hence, the maxi-
mum of the lightest Higgs mass in the (M +1)SSM is not
obtained for large tanβ as in the MSSM, but rather for
moderate tanβ (as confirmed by our numerical analysis,
cf. Sect. 5). On the other hand, the radiative corrections
are identical in the (M+1)SSM and in the MSSM. In par-
ticular, the linear dependence in X̃t is the same in both
models. Hence, from (2.11), the upper bound on m2

1 is

3 In (3.11) and below in (3.11) we omit the argument of ht

wherever its choice corresponds to a higher order effect
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maximized for X̃t = 6 (corresponding to Ãt = 61/2MSUSY,
the “maximal mixing” case), and minimized for X̃t = 0
(corresponding to Ãt = 0, the “no mixing” case).

4 Parametrization of the (M + 1)SSM

Equation (3.11) gives an upper bound on the lightest Higgs
mass m1 regardless of its coupling to the gauge bosons.
In the extreme case of a pure singlet lightest Higgs, the
next-to-lightest Higgs is non-singlet and the upper bound
(3.11) actually applies to m2. On the other hand, it can
occur that the lightest Higgs is weakly coupled to gauge
bosons (without being a pure singlet) and m2 is above
the limit (3.11). This case requires a numerical analysis,
which will be performed in the next section. First, let us
present our methods of scanning the parameter space of
the (M + 1)SSM.

Not counting the known gauge couplings, the param-
eters of the model are

λ , κ , ht , Aλ , Aκ , At , m2
H1

, m2
H2

, m2
S , m2

Q , m2
T ,
(4.1)

where ht is eventually fixed by the top mass and an overall
scale of the dimensionful parameters by the Z mass. Now,
let us see how to handle this high dimensional parameter
space in two different scenarios.

4.1 Constrained (M + 1)SSM

In C(M + 1)SSM the soft terms are assumed universal at
the GUT scale, the global minimum of the effective po-
tential has to be the global minimum and present experi-
mental constraints on the sparticle and Higgs masses are
applied. The free parameters can be chosen as the GUT
scale dimensionless parameters

λ0 , κ0 , ht0 ,
A0

M1/2
,

m2
0

M2
1/2

, (4.2)

where A0, M1/2 and m2
0 are the universal trilinar coupling,

gaugino mass and scalar mass respectively. In order to
scan the 5-dimensional parameter space of the C(M +
1)SSM, we proceed as in [7,9].

First, we scan over the GUT scale parameters (4.2) and
integrate numerically the renormalization group equations
[5] down to the SUSY scale in each case.

Then, we minimize the complete two loop effective po-
tential in order to obtain the Higgs VEVs h1, h2, s. In
principle, we could have followed the same procedure as
in Sect. 3 to obtain the dominant two loop corrections, i.e.
replacing h1 by h′

1 and ht by ht(mt). However, in order
to obtain numerically correct results also in the regime
MSUSY < 1TeV, we did not expand V (1) in powers of
hi/MSUSY, i.e. we used the full expression (2.3) for V (1).
Then it becomes inconvenient to perform the field redef-
inition (3.6), which is implicitly non-linear due to the h1
dependence of t via mt. Therefore we proceed differently:

For a given set of low energy parameters, which are im-
plicitly obtained at the scale Q ∼ MSUSY, we minimize
directly

Veff = V (0) + V (1) + V (2), (4.3)

with V (0) as in (2.2), V (1) as in (2.3) and V (2) as in (2.12).
Points in the parameter space leading to deeper unphysical
minima of the effective potential with hi = 0 or s = 0 are
removed.

The overall scale is then fixed by relating the VEVs hi

to the physical Z mass through

M2
Z =

1
2
(g2

1 + g2
2)(Z

2
H1

h2
1 + h2

2), (4.4)

with ZH1 as in (2.13). Next, we throw away all points in
the parameter space where the top quark mass (including
corrections (2.14) to ht) does not correspond to the mea-
sured mpole

t = 173.8 ± 5.2GeV. We also ask for sfermions
with masses mf̃ � MZ/2 and gluinos with masses mg̃ �
200GeV.

Finally, the correct 3× 3 Higgs mass matrix is related
to the matrix of second derivatives of the Higgs poten-
tial at the minimum after dividing (1/2)∂2

h1
Veff by ZH1 ,

and (1/2)∂h1∂h2Veff and (1/2)∂h1∂sVeff by Z
1/2
H1

. For each
point in the parameter space, we then obtain the two loop
Higgs boson masses and couplings to gauge bosons. Then,
we apply present constraints from the negative Higgs
search at LEP (cf. Sect. 5 for details).

The results in Sect. 5 are based on scannings over ∼ 106

points in the parameter space. The essential effect of all
constraints within the C(M + 1)SSM is to further reduce
the allowed range for the Yukawa coupling λ to λ � .3.

4.2 General (M + 1)SSM

In the general (M + 1)SSM, we only assume that we are
in a local minimum of the effective potential (4.3) and
the running Yukawa couplings λ, κ, ht are free of Lan-
dau singularities below the GUT scale. In order to scan
the high dimensional parameter space (4.1) of the general
(M + 1)SSM we proceed as follows.

First, we use the three minimization equations of the
full effective potential (4.3) with respect to h1, h2 and s
in order to eliminate the parameters m2

H1
, m2

H2
and m2

S

in favor of the three Higgs VEVs. Using the relation (4.4),
we replace h1, h2 by tanβ and MZ . Finally, (2.14), (2.15)
and (2.16) allow us to express ht in terms of mpole

t and
the other parameters.

We are then left with six “tree level” parameters λ,
κ, Aλ, Aκ, s, tanβ, and three parameters appearing only
through the radiative corrections, which we choose as Ãt,
MSUSY and δ, as defined in (2.6) and (2.8).

Requiring that the Yukawa couplings are free of Lan-
dau singularities below the GUT scale and using the renor-
malization group equations of the (M+1)SSM [5], one ob-
tains upper limits on λ, κ, ht at the SUSY scale. The latter
turns into a lower bound on tanβ depending mainly on
mpole

t and MSUSY. As expected from (3.11), we observe
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Fig. 1. Upper limits on the mass m1 of the lightest CP even
Higgs boson versus MSUSY in the general (M+1)SSM (straight
line) and the C(M + 1)SSM (crosses)

that upper limits on Higgs masses are obtained when λ is
maximal. From the renormalization group equations, one
finds that the upper limit on λ increases with decreasing
κ; thus we choose κ ∼ 0 and λ = λmax ∼ .7 (which still
depends on ht, i.e. on tanβ).

As already mentioned, one can see from (3.11) that the
lightest Higgs mass is maximized for moderate values of
tanβ. Hence, except in Fig. 4 where tanβ varies, we fix
tanβ = 2.7 which, as we shall see, maximizes the Higgs
masses for mpole

t = 173.8GeV.
Unless stated otherwise, the upper limits on the Higgs

masses presented in the next section are given in the max-
imal mixing scenario (Ãt = 61/2MSUSY). We have also
found that Higgs masses are maximized for small values
of δ and fixed δ = 0 (thus mQ = mT = MSUSY). In or-
der to obtain the results presented in the next section,
we have used numerical routines to maximize the Higgs
masses with respect to the remaining three parameters
Aλ, Aκ, s.

5 Reduced couplings versus mass bounds

Let us start with the mass m1 of the lightest Higgs scalar,
independently of its coupling to gauge bosons. The up-
per limit on m1 in the general (M + 1)SSM is plotted in
Fig. 1 (straight line) as a function of MSUSY (for mpole

t =
173.8GeV). This limit is well above the one of the MSSM
because of the additional tree level contribution to m2

1 pro-
portional to λ2M2

Z (cf. (1.3)). At MSUSY = 1TeV we have
m1 ≤ 133.5GeV (in agreement with the analytic approx-
imation (3.11)); at MSUSY = 3TeV this upper limit in-

creases only by ∼ 3GeV. This weak dependence on MSUSY
is due to the negative two loop contributions to m1.

Within the C(M + 1)SSM, the combined constraints
on the parameter space require λ to be small, λ � .3 [7,
9]. Accordingly, the upper limit on m1 is very close to the
one of the MSSM. It is shown as crosses in Fig. 1, and
reaches 120GeV at MSUSY = 1TeV. In the following, we
shall assume MSUSY = 1TeV.

A parenthetical remark on the behavior for small
MSUSY is in order. From (2.7), it is obvious that, in the
assumed limit δ → 0, the assumption of maximal stop
mixing (Ãt = 61/2MSUSY) cannot be maintained for

√
6 − √

2
2

mt < MSUSY <

√
6 +

√
2

2
mt, (5.1)

because it would imply a negative stop mass squared.
Therefore, in the general (M+1)SSM, we choose Ãt in this
regime such that the lightest stop mass squared remains
positive. On the other hand, within the C(M + 1)SSM,
where soft SUSY breaking terms are related, the limit
MSUSY small is not feasable since it would contradict the
negative results on sparticle searches.

As discussed in the introduction, the upper limit on m1
is not necessarily physically relevant, since the coupling of
the lightest Higgs to the Z boson can be very small. Ac-
tually, this phenomenon can also appear in the MSSM, if
sin2(β−α) is small. However, the CP odd Higgs boson A is
then necessarily light (mA ∼ mh < MZ at tree level), and
the process Z → hA can be used to cover this region of
the parameter space in the MSSM. In the (M +1)SSM, a
small gauge boson coupling of the lightest Higgs S1 is usu-
ally related to a large gauge singlet component, in which
case no (strongly coupled) light CP odd Higgs boson is
available. Hence, Higgs searches in the (M + 1)SSM have
possibly to rely on the search for the second lightest Higgs
scalar S2.

Let us now define Ri as the square of the coupling
ZZSi divided by the corresponding standard model Higgs
coupling:

Ri = (Si1 sinβ + Si2 cosβ)2, (5.2)

where Si1, Si2 are the H1, H2 components of the CP even
Higgs boson Si, respectively. Evidently, we have 0 ≤ Ri ≤
1 and unitarity implies

3∑
i=1

Ri = 1. (5.3)

Fortunately, as was already mentioned, in the extreme
case R1 → 0 the upper limit on m2 is the same as the
above upper limit on m1. On the other hand, scenarios
with, e.g., R1 ∼ R2 ∼ 1/2 are possible. In the following
we will discuss these situations in detail.

We are interested in upper limits on the two lightest
CP even Higgs bosons S1,2. These are obtained in the
limit where the third Higgs, S3, is heavy and decouples, i.e.
R3 ∼ 0. (This is the equivalent of the so-called decoupling
limit in the MSSM: the upper bound on the lightest Higgs
h is saturated when the second Higgs H is heavy and
decouples.) Hence, we have R1 +R2 � 1.
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Fig. 2. Upper limits on the mass m2 of the second light-
est CP even Higgs (in the regime R2 > 1/2) against R2

in the general (M + 1)SSM (thin straight line); the general
(M + 1)SSM with LEP constraints (5.4) (thick straight line);
the general (M +1)SSM with expected LEP2 constraints (5.5)
(thick dashed line); the C(M + 1)SSM with LEP constraints
(5.4) (crosses)

In the regime R1 ≥ 1/2 experiments will evidently
first discover the lightest Higgs (with m1 ≤ 133.5GeV for
MSUSY = 1TeV). The “worst case scenario” in this regime
corresponds to m1 � 133.5GeV, R1 � 1/2; the presence
of a Higgs boson with these properties has to be excluded
in order to test this part of the parameter space of the
general (M + 1)SSM.

The regime where R1 < 1/2 (and hence 1/2 < R2 ≤
1) is more delicate: here the lightest Higgs may escape
detection because of its small coupling, and it may be
easier to detect the second lightest Higgs. In Fig. 2 we
show the upper limit on m2 as a function of R2 in the
general (M + 1)SSM as a thin straight line. For R2 →
1 (corresponding to R1 → 0) we obtain the announced
result: the upper limit on a Higgs boson with R → 1 is
always given by the previous upper limit on m1, even if the
corresponding Higgs boson is actually the second lightest
one. The same applies, of course, to the C(M + 1)SSM
where the upper limit on m2 is also indicated as crosses
in Fig. 2. In the following we will discuss this “delicate”
regime, R1 < 1/2 and 1/2 < R2 ≤ 1, in some detail.

Fortunately, one finds that the upper limit on m2 is
saturated only when the mass m1 of the lightest Higgs
boson tends to 0. Clearly, one has to take into account
the constraints from Higgs boson searches which apply to
reduced couplings R < 1/2 – i.e. lower limits on m1 as
a function of R1 � 1 − R2 – in order to obtain realistic
upper limits on m2 versus R2.

Lower limits on m1 as a function of R1 (in the regime
R1 < 1/2) have been obtained at LEP [15]. We use the
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Fig. 3. Upper limits on the mass m2 against R2, for different
lower limits on the mass m1 (as indicated on each line in GeV)
of the lightest Higgs boson for 1/2 < R2 < 1. R1 = 1 − R2

is shown on the top axis. The boundary of the shaded area
corresponds to the thick line in Fig. 2; also the dashed line is
the same as in Fig. 2

following analytic approximation for the constraints on R1
versus m1 in this regime:

log10 R1 <
m1

45GeV
− 2. (5.4)

The resulting upper limit on m2 is shown in Fig. 2 as a
thick straight line. This constraint is automatically in-
cluded in the C(M +1)SSM results (crosses). Present and
future Higgs searches at LEP will lead to more stringent
constraints in the regime .1 < R1 < 1/2 [16]. We approxi-
mate the possible constraints from a run at 198GeV c.m.
energy and 200 pb−1 by

lnR1 < 2
( m1

98GeV

)4
− 3. (5.5)

The resulting upper limit on m2 is shown in Fig. 2 as a
thick dashed line.

It would be desirable to have the upper limit on m2 in
the general (M + 1)SSM for arbitrary lower limits on m1
as a function of R1. To this end we have produced Fig. 3.
The different dotted curves show the upper limit on m2
as a function of R2 for different lower limits on m1 (as
indicated on each curve) as a function of R1 (as indicated
at the top of Fig. 3).

In practice, Fig. 3 can be used to obtain upper limits
on the mass m2, in the regime R1 < 1/2, for arbitrary
experimental lower limits on the mass m1: For each value
of the coupling R1, which corresponds to a vertical line
in Fig. 3, one has to find the point where this vertical line
crosses the dotted curve associated to the corresponding
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Fig. 4. Upper limits on m1,2 with R1,2 = 1 (thick lines), and
upper limits on m2 with R2 = 1/2 (thin lines) versus tanβ
in the general (M + 1)SSM for mpole

t = 173.8GeV (straight),
179GeV (dashed) and 168.6GeV (dotted); upper limit on m2

in the C(M + 1)SSM (crosses) for mpole
t = 173.8 ± 5.2GeV.

The LEP constraints (5.4) are taken into account in each case

experimental lower limit on m1. Joining these points by
a curve leads to the upper limit on m2 as a function of
R2. We have indicated again the present LEP limit (5.4),
already shown in Fig. 2, which excludes the shaded region
(m2 > 172.5GeV for R2 = .5, m2 > 150GeV for R2 = .75
et cetera). We have also shown again the possible LEP2
constraints on m2 arising from (5.5) as a thick dashed line.

Lower experimental limits on a Higgs boson with R >
1/2 restrict the allowed regime for m2 (for R2 > 1/2)
in Fig. 3 from below. The present lower limits on m2 from
LEP are not visible in Fig. 3, since we have only shown the
range m2 > 130GeV. Possibly Higgs searches at the Run
II of the Tevatron push the lower limits on m2 upwards
into this range. This would be necessary if one aims at
an exclusion of the “delicate” regime of the (M + 1)SSM:
Then, lower limits on the mass m2 – for any value of R2
between 1/2 and 1 – of at least 133.5GeV are required;
the precise experimental lower limits on m2 as a function
of R2, which would be needed to this end, will depend on
the achieved lower limits on m1 as a function of R1 in the
regime R1 < 1/2.

In principle, from (5.3), one could have R2 > R1 with
R2 as small as 1/3. However, in the regime 1/3 < R2 <
1/2, the upper bound on m2 as a function of R2 for differ-
ent fixed values of m1 can only be saturated if R1 = R2.
Then it is sufficient to look for a Higgs boson with a cou-
pling 1/3 < R < 1/2 and a mass m � 133.5GeV to cover
this region of the parameter space of the (M + 1)SSM.

Finally, we consider the dependence of the upper
bounds on m1,2 on tanβ and the top quark pole mass.
In Fig. 4 we plot the upper limit on m1,2 (for R1,2 = 1)
against tanβ for mpole

t = 173.8GeV as a thick straight

line. Remarkably, as announced before, this tanβ depen-
dence is very different from the MSSM: the maximum
is assumed for tanβ � 2.7 (with m1,2 � 133.5GeV in
agreement with Figs. 2 and 3). The origin of this tanβ
dependence is the tree level contribution ∼ λ2 sin2 β to
(3.12). The height and the location of the maximum varies
somewhat with mpole

t ; the thick dashed and dotted curves
correspond to mpole

t = 173.8 ± 5.2GeV, respectively. The
absolute maximum is at tanβ � 3 with m1,2 � 135GeV.

In the “delicate” regime, where one has to search for
the second lightest Higgs with R2 between 1/2 and 1, one
could worry whether the tanβ dependence of the upper
limit on m2 is different. This is not the case: as a thin
straight line we show the upper limit on m2 in the ex-
treme case R2 = 1/2 and mpole

t = 173.8GeV (where
the LEP constraint (5.4) is taken into account), which
assumes again its maximum for tanβ � 2.7 (now with
m2 � 172.5GeV in agreement with Figs. 2 and 3). As
above, the thin dashed and dotted curves correspond to
mpole

t = 173.8 ± 5.2GeV, respectively, and the absolute
maximum is at tanβ � 3 with m2 � 175.5GeV. Within
the C(M + 1)SSM, where λ is small, the dependence of
the upper limit on m2 on tanβ resembles more the one of
the MSSM as shown as crosses in Fig. 4.

To conclude, we have studied the CP even Higgs sector
of the general (M +1)SSM and the C(M +1)SSM includ-
ing the dominant two loop corrections to the effective po-
tential. We have emphasized the need to search for Higgs
bosons with reduced couplings, which are possible within
this model. Our main results are presented in Fig. 3, which
allows one to obtain the constraints on the Higgs sector
of the model both from searches for Higgs bosons with
weak coupling (R < 1/2), and strong coupling (R > 1/2).
The necessary (but not sufficient) condition for testing the
complete parameter space of the (M + 1)SSM is to rule
out a CP even Higgs boson with a coupling 1/3 < R < 1
and a mass below 135GeV. The sufficient condition (i.e.
the precise upper bound on m2 versus R2) depends on
the achieved lower bound on the mass of a “weakly” cou-
pled Higgs (with 0 < R < 1/2) and can be obtained from
Fig. 3. At the Tevatron this would probably require an in-
tegrated luminosity of up to 30 fb−1 [17]. If this cannot
be achieved, and no Higgs is discovered, we will have to
wait for the results of the LHC in order to see whether
supersymmetry beyond the MSSM is realized in nature.
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